Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: High-Performance Computing
Guest editors: Achyut Shankar
Article type: Research Article
Authors: Zhang, Guangtaoa; b
Affiliations: [a] Information Engineering College, Yangzhou Polytechnic College, Yangzhou, Jiangsu, China | [b] Jiangsu Safety and Environment Technology and Equipment for Planting and Breeding Industry Engineering, Yangzhou, Jiangsu, China | E-mail: zgt8@163.com
Correspondence: [*] Corresponding author: Guangtao Zhang, Information Engineering College, Yangzhou Polytechnic College, Yangzhou, Jiangsu, China. E-mail: zgt8@163.com
Abstract: In order to solve the problem of low computing efficiency in big data analysis and model construction, this paper intended to deeply explore the big data analysis programming model, DAG (Directed Acyclic Graph) and other contents, and on this basis, it adopted a distributed matrix computing system Octopus for big data analysis. Octopus is a universal matrix programming framework that provides a programming model based on matrix operations, which can conveniently analyze and process large-scale data. By using Octopus, users can extract functions and data from multiple platforms and operate through a unified matrix operation interface. The distributed matrix representation and storage layer can design data storage formats for distributed file systems. Each computing platform in OctMatrix provides its own matrix library, and it provides a matrix library written in R language for the above users. SymboMatrix provides a matrix interface to OctMatrix that is consistent with OctMatrix. However, SymboMatrix also retains the flow diagram for matrix operations in the process, and it also supports logical and physical optimization of the flow diagram on a DAG. For the DAG computational flow graph generated by SymbolMatrix, this paper divided it into two parts: logical optimization and physical optimization. This paper adopted a distributed file system based on line matrix, and obtained the corresponding platform matrix by reading the documents based on line matrix. In the evaluation of system performance, it was found that the distributed matrix computing system had a high computing efficiency, and the average CPU (central processing unit) usage reached 70%. This system can make full use of computing resources and realize efficient parallel computing.
Keywords: Big data analysis, distributed matrix computing system, data management, matrix segmentation, historical data
DOI: 10.3233/IDT-230309
Journal: Intelligent Decision Technologies, vol. 18, no. 4, pp. 2915-2931, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl