Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Nagaraja, Pottia; * | Chennupati, Sumanth Kumarb
Affiliations: [a] Electrical Electronics & Communication Engineering, GITAM (Deemed to be University), Hyderabad, India | [b] Electrical Electronics & Communication Engineering, GITAM (Deemed to be University), Visakhapatnam, India
Correspondence: [*] Corresponding author: Potti Nagaraja, Assistant Professor, Electrical Electronics & Communication Engineering, GITAM (Deemed to be University), Hyderabad, India. E-mail: npotti@gitam.edu.
Abstract: In recent days people are affected with lung cancer in, and the severe stage of this disease leads to death for human beings. Lung cancer is the second most typical cancer type to be found worldwide. Pulmonary nodules present in the lung can be used to identify cancer metastases because these nodules are visible in the lungs. Cancer diagnosis and region segmentation are the most important procedures because the prosperous prediction-affected area can accurately identify the variation in cancer and normal cell. By analyzing the lung nodules present in the image, the radiologists missed several useful low-density and small nodules, and this may tend to the diagnose process very difficult, and the radiologists needs more time to decide the prediction of affected lung nodules. Due to the radiologist’s physical inspection time and the possibility of missing nodules, automatic identification is needed to address these issues. In order to achieve this, a new hybrid deep learning model is developed for lung cancer detection with the help of CT images. At first, input images like CT images are gathered from the standard data sources. Once the images are collected, it undergoes for the pre-processing stage, where it is accomplished by Weighted mean histogram equalization and mean filtering. Consequently, a novel hybrid segmentation model is developed, in which Adaptive fuzzy clustering is incorporated with the Optimized region growing; here, the parameters are optimized by Improved Harris Hawks Optimization (IHHO). At last, the classification is accomplished by Ensemble-based Deep Learning Model (EDLM) that is constructed by VGG-16, Residual Network (ResNet) and Gated Recurrent Unit (GRU), in which the hyperparameters are tuned optimally by an improved HHO algorithm. The experimental outcomes and its performance analysis elucidate the effectiveness of the suggested detection model aids to early recognition of lung cancer.
Keywords: CT images, lung cancer detection, adaptive fuzzy clustering, region growing, ensemble-based deep learning model, improved harris hawks optimization IHHO
DOI: 10.3233/IDT-230071
Journal: Intelligent Decision Technologies, vol. 17, no. 4, pp. 1135-1160, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl