Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Issue papers on: Data Intelligence
Article type: Research Article
Authors: Bhimavarapu, Usharania; * | Sreedevi, M.b
Affiliations: [a] Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India | [b] Computer Science and Engineering Department, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
Correspondence: [*] Corresponding author: Usharani Bhimavarapu, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India. E-mail: ushareddy@kluniversity.in.
Abstract: Fine particulate matter (PM2.5) is one of the major air pollutants and is an important parameter for measuring air quality levels. High concentrations of PM2.5 show its impact on human health, the environment, and climate change. An accurate prediction of fine particulate matter (PM2.5) is significant to air pollution detection, environmental management, human health, and social development. The primary approach is to boost the forecast performance by reducing the error in the deep learning model. So, there is a need to propose an enhanced loss function (ELF) to decrease the error and improve the accurate prediction of daily PM2.5 concentrations. This paper proposes the ELF in CTLSTM (Chi-Square test Long Short Term Memory) to improve the PM2.5 forecast. The ELF in the CTLSTM model gives more accurate results than the standard forecast models and other state-of-the-art deep learning techniques. The proposed ELFCTLSTM reduces the prediction error of by a maximum of 10 to 25 percent than the state-of-the-art deep learning models.
Keywords: Air pollution, loss function, long short-term memory, PM2.5, particulate levels
DOI: 10.3233/IDT-220111
Journal: Intelligent Decision Technologies, vol. 17, no. 2, pp. 363-376, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl