Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Honarvar, Ali Reza* | Sami, Ashkan
Affiliations: Computer Science and Engineering and Information Technology Department, Shiraz University, Shiraz, Iran
Correspondence: [*] Corresponding author: Ali Reza Honarvar, Computer Science and Engineering and Information Technology Department, Shiraz University, Shiraz, Iran. E-mail: Alireza_honarvar@yahoo.co.uk.
Abstract: At present, the issue of air quality in populated urban areas is recognized as an environmental crisis. Air pollution affects the sustainability of the city. In controlling air pollution and protecting its hazards from humans, air quality data are very important. However, the costs of constructing and maintaining air quality registration infrastructure are very expensive and high, and air quality data recording at one point will not be generalizable to even a few kilometers. Some of the gains come from the integration of multiple data sources, which can never be achieved through independent single-source processing. Urban organizations in each city independently produce and record data relevant to the organization’s goals and objectives. These issues create separate data silos associated with an urban system. These data are varied in model and structure, and the integration of such data provides an appropriate opportunity to discover knowledge that can be useful in urban planning and decision making. This paper aims to show the generality of our previous research, which proposed a novel model to predict Particulate Matter (PM) as the main factor of air quality in the regions of the cities where air quality sensors are not available through urban big data resources integration, by extending the model and experiments with various configuration for different settings in smart cities. This work extends the evaluation scenarios of the model with the extended dataset of city of Aarhus, in Denmark, and compare the model performance against various specified baselines. Details of removing the heterogeneity of multiple data sources in the Multiple Data Set Aggregator & Heterogeneity Remover (MDA&HR) and improving the operation of Train Data Splitter (TDS) part of the model by focusing on the finding more similar pattern of air quality also are presented in this paper. The acceptable accuracy of the results shows the generality of the model.
Keywords: Air quality, big data, sustainable smart cities, multi-source data, urban data analytics
DOI: 10.3233/IDT-200147
Journal: Intelligent Decision Technologies, vol. 15, no. 3, pp. 371-385, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl