Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Arasteh, Bahman* | Sadegi, Razieh | Arasteh, Keyvan
Affiliations: Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
Correspondence: [*] Corresponding author: Bahman Arasteh, Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran. E-mail: b_arasteh@iaut.ac.ir.
Abstract: A considerable percentage of software costs are usually related to its maintenance. Program comprehension is a prerequisite of the software maintenance and a considerable time of maintainers is spent to comprehend the structure and behavior of the software when the source code is the only product available. Program comprehension is one of difficult and challenging task especially in the absence of design documents of the software system. Clustering of software modules is an effective reverse-engineering method for extracting the software architecture and structural model from the source code. Finding the best clustering is considered to be a multi-objective NP hard optimization-problem and different meta-heuristic algorithms have been used for solving this problem. Local optimum, insufficient quality, insufficient performance and insufficient stability are the main shortcomings of the previous methods. Attaining higher values for software clustering quality, attaining higher success rate in clustering of software modules, attaining higher stability of the obtained results and attaining the higher convergence (speed) to generate optimal clusters are the main goals of this study. In this study, a hybrid meta heuristic method (ARAZ) includes particle swarm optimization algorithm and genetic algorithm (PSO-GA) is proposed to find the best clustering of software modules. An extensive series of experiments on 10 standard benchmark programs have been conducted. Regarding the results of experiments, the proposed method outperforms the other methods in terms of clustering quality, stability, success rate and convergence speed.
Keywords: Software maintenance, software module clustering, particle swarm optimization algorithm, clustering quality, convergence speed
DOI: 10.3233/IDT-200070
Journal: Intelligent Decision Technologies, vol. 14, no. 4, pp. 449-462, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl