Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kotsifakos, Alexiosa; * | Athitsos, Vassilisa | Papapetrou, Panagiotisb
Affiliations: [a] Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA | [b] Department of Computer and Systems Sciences, Stockholm University, Stockholms, Sweden
Correspondence: [*] Corresponding author: Alexios Kotsifakos, Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, USA. E-mail:alexios.kotsifakos@mavs.uta.edu
Abstract: Many distance or similarity measures have been proposed for time series similarity search. However, none of these measures is guaranteed to be optimal when used for 1-Nearest Neighbor (NN) classification. In this paper we study the problem of selecting the most appropriate distance measure, given a pool of time series distance measures and a query, so as to perform NN classification of the query. We propose a framework for solving this problem, by identifying, given the query, the distance measure most likely to produce the correct classification result for that query. From this proposed framework, we derive three specific methods, that differ from each other in the way they estimate the probability that a distance measure correctly classifies a query object. In our experiments, our pool of measures consists of Dynamic Time Warping (DTW), Move-Split-Merge (MSM), and Edit distance with Real Penalty (ERP). Based on experimental evaluation with 45 datasets, the best-performing of the three proposed methods provides the best results in terms of classification error rate, compared to the competitors, which include using the Cross Validation method for selecting the distance measure in each dataset, as well as using a single specific distance measure (DTW, MSM, or ERP) across all datasets.
Keywords: Time series, classification, distance measures
DOI: 10.3233/IDA-150791
Journal: Intelligent Data Analysis, vol. 20, no. 1, pp. 5-27, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl