Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Anbarasan, M.a | Ramesh, K.b; *
Affiliations: [a] Department of Artificial Intelligence and Data Science, Panimalar Engineering College, Chennai, India | [b] Department of Computer Science and Engineering, V.R.S. College of Engineering and Technology, Arasur, Villupuram, India
Correspondence: [*] Corresponding author: K. Ramesh, Department of Computer Science and Engineering, V.R.S. college of Engineering and Technology, Arasur, Villupuram, India. E-mail: krameshmephd@gmail.com.
Abstract: The pharmaceutical supply chain, which ensures that drugs are accessible to patients in a trusted process, is a complex arrangement in the healthcare industry. For that, a secure pharmachain framework is proposed. Primarily, the users register their details. Then, the details are converted into cipher text and stored in the blockchain. If a user requests an order, the manufacturer receives the request, and the order is handed to the distributor. Labeling is performed through Hypergeometric Distribution Centroid Selection K-Medoids Clustering (HDCS-KMC) to track the drugs. The healthcare Pharmachain architecture uses IoT to control the supply chain and provide safe medication tracking. The framework includes security with a classifier and block mining consensus method, boosts performance with a decision controller, and protects user and medication information with encryption mechanisms. After that, the drugs are assigned to vehicles, where the vehicle ID and Internet of Things (IoT) sensor data are collected and pre-processed. Afterward, the pre-processed data is analyzed in the fog node by utilizing a decision controller. Now, the status ID is generated based on vehicle id and location. The generated status ID is meant for fragmentation, encryption, and block mining processes. If a user requests to view the drug’s status ID, then the user needs to get authentication. The user’s forking behavior and request activities were extracted and given to the classifier present in the block-mining consensus algorithm for authentication purposes. Block mining happens after authentication, thereby providing the status ID. Furthermore, the framework demonstrates an efficaciousness in identifying assaults with a low False Positive Rate (FPR) of 0.022483% and a low False Negative Rate (FNR) of 1.996008%. Additionally, compared to traditional methods, the suggested strategy exhibits good precision (97.869%), recall (97.0039%), accuracy (98%), and F-measure (97.999%).
Keywords: Double Transposed-Prime Key-Columnar Transposition Cipher (DT-PK-CTC), Internet of Things (IoT), Hypergeometric Distribution Centroid Selection K-Medoids Clustering (HDCS-KMC), healthcare, pharmachain, Radial Basis Function (RBF)
DOI: 10.3233/IDA-240087
Journal: Intelligent Data Analysis, vol. Pre-press, no. Pre-press, pp. 1-25, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl