Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yousefi, Leilaa; * | Tucker, Allanb
Affiliations: [a] Department of Life Science, Brunel University London, UK | [b] Department of Computer Science, Brunel University London, UK
Correspondence: [*] Corresponding author: Leila Yousefi, Department of Life Science, Brunel University London, UK. E-mail: Lilyyousefi84@gmail.com.
Abstract: Predicting complications associated with complex disease is a challenging task given imbalanced and highly correlated disease complications along with unmeasured or latent factors. To analyse the complications associated with complex disease, this article attempts to deal with complex imbalanced clinical data, whilst determining the influence of latent variables within causal networks generated from the observation. This work proposes appropriate Intelligent Data Analysis methods for building Dynamic Bayesian networks with latent variables, applied to small-sized clinical data (a case of Type 2 Diabetes complications). First, it adopts a Time Series Bootstrapping approach to re-sample the rare complication class with a replacement with respect to the dynamics of disease progression. Then, a combination of the Induction Causation algorithm and Link Strength metric (which is called IC*LS approach) is applied on the bootstrapped data for incrementally identifying latent variables. The most highlighted contribution of this paper gained insight into the disease progression by interpreting the latent states (with respect to the associated distributions of complications). An exploration of inference methods along with confidence interval assessed the influences of these latent variables. The obtained results demonstrated an improvement in the prediction performance.
Keywords: Latent variable, diabetes, Dynamic Bayesian Networks, time series bootstrapping, disease prediction
DOI: 10.3233/IDA-205570
Journal: Intelligent Data Analysis, vol. 26, no. 2, pp. 501-524, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl