Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rocha, Carlos Narcisoa; * | Rodrigues, Fátimab
Affiliations: [a] ALERT Life Sciences Computing, Porto, Portugal | [b] Interdisciplinary Studies Research Center, Institute of Engineering Polytechnic of Porto (ISEP/IPP), Porto, Portugal
Correspondence: [*] Corresponding author: Carlos Narciso Rocha, ALERT Life Sciences Computing, Porto, Portugal. E-mail: carlos.rocha@alert-online.com.
Abstract: The emergency department of a hospital plays an extremely important role in the healthcare of patients. To maintain a high quality service, clinical professionals need information on how patient flow will evolve in the immediate future. With accurate emergency department forecasts it is possible to better manage available human resources by allocating clinical staff before peak periods, thus preventing service congestion, or releasing clinical staff at less busy times. This paper describes a solution developed for the presentation of hourly, four-hour, eight-hour and daily number of admissions to a hospital’s emergency department. A 10-year history (2009–2018) of the number of emergency admissions in a Portuguese hospital was used. To create the models several methods were tested, including exponential smoothing, SARIMA, autoregressive and recurrent neural network, XGBoost and ensemble learning. The models that generated the most accurate hourly time predictions were the recurrent neural network with one-layer (sMAPE = 23.26%) and with three layers (sMAPE = 23.12%) and XGBoost (sMAPE = 23.70%). In terms of efficiency, the XGBoost method has by far outperformed all others. The success of the recurrent neuronal network and XGBoost machine learning methods applied to the prediction of the number of emergency department admissions has been demonstrated here, with an accuracy that surpasses the models found in the literature.
Keywords: SARIMA, exponential smoothing, artificial neural network, XGBoost, ensemble learning
DOI: 10.3233/IDA-205390
Journal: Intelligent Data Analysis, vol. 25, no. 6, pp. 1579-1601, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl