Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Limina; b | Chen, Penga; b | Chen, Shengleic | Sun, Minghuia; b; *
Affiliations: [a] College of Computer Science and Technology, Jilin University, Changchun, Jilin, China | [b] Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China | [c] School of Economics, Nanjing Audit University, Nanjing, Jiangsu, China
Correspondence: [*] Corresponding author: Minghui Sun, College of Computer Science and Technology, Jilin University, Changchun, Jilin 130012, China. E-mail: smh@jlu.edu.cn.
Abstract: Bayesian network classifiers (BNCs) have proved their effectiveness and efficiency in the supervised learning framework. Numerous variations of conditional independence assumption have been proposed to address the issue of NP-hard structure learning of BNC. However, researchers focus on identifying conditional dependence rather than conditional independence, and information-theoretic criteria cannot identify the diversity in conditional (in)dependencies for different instances. In this paper, the maximum correlation criterion and minimum dependence criterion are introduced to sort attributes and identify conditional independencies, respectively. The heuristic search strategy is applied to find possible global solution for achieving the trade-off between significant dependency relationships and independence assumption. Our extensive experimental evaluation on widely used benchmark data sets reveals that the proposed algorithm achieves competitive classification performance compared to state-of-the-art single model learners (e.g., TAN, KDB, KNN and SVM) and ensemble learners (e.g., ATAN and AODE).
Keywords: Bayesian network classifier, maximum correlation criterion, minimum dependence criterion, conditional independence, conditional mutual information
DOI: 10.3233/IDA-194959
Journal: Intelligent Data Analysis, vol. 25, no. 1, pp. 35-55, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl