Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Haowen | Dong, Yabo* | Li, Jing | Xu, Duanqing
Affiliations: College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China
Correspondence: [*] Corresponding author: Yabo Dong, College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China. E-mail: zhwlm@zju.edu.cn.
Abstract: Time series similarity search is an essential operation in time series data mining and has received much higher interest along with the growing popularity of time series data. Although many algorithms to solve this problem have been investigated, there is a challenging demand for supporting similarity search in a fast and accurate way. In this paper, we present a novel approach, TS2BC, to perform time series similarity search efficiently and effectively. TS2BC uses binary code to represent time series and measures the similarity under the Hamming Distance. Our method is able to represent original data compactly and can handle shifted time series and work with time series of different lengths. Moreover, it can be performed with reasonably low complexity due to the efficiency of calculating the Hamming Distance. We extensively compare TS2BC with state-of-the-art algorithms in classification framework using 61 online datasets. Experimental results show that TS2BC achieves better or comparative performance than other the state-of-the-art in accuracy and is much faster than most existing algorithms. Furthermore, we propose an approximate version of TS2BC to speed up the query procedure and test its efficiency by experiment.
Keywords: Time series, similarity measure, binary code representation, Hamming Distance
DOI: 10.3233/IDA-194876
Journal: Intelligent Data Analysis, vol. 25, no. 2, pp. 439-461, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl