Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: FSDM 2018, November 16–19, 2018, Bangkok, Thailand
Guest editors: Newton Spolaôr, Huei Diana Lee, Feng Chung Wu and Sotiris Kotsiantis
Article type: Research Article
Authors: Zhao, Yia; b; * | Guo, Junfeib | He, Keqinga
Affiliations: [a] Department School of Computer Science, Wuhan University, Wuhan, China | [b] Department School of Data Science and Software Engineering, Qingdao University, Qingdao, China
Correspondence: [*] Corresponding author: Yi Zhao, Department School of Computer Science, Wuhan University, Wuhan, China. E-mail: ivwepriu@sina.com.
Abstract: “Internet plus” application service recommendation is challenged by two issues: One is the increase in service volume and the disorderliness of the service organizations. A second is the diversification of user requirements. The research focus of this study was to investigate how to achieve more ordered aggregation and recommend services that meet the individualized requirements of users. This paper addresses the disorderliness of conventional service aggregation and considers the aggregation requirements of QoS weights with non-functional targets. Based on semantic relevance using the role (R), goal (G), process (P), service (S) demand metamodel, an RGPS association is proposed that is a weighted network for ordered QoS service aggregation. An individualized service recommendation method then is provided, based on an LSTM neural network with role and target backstepping using RGPS association network, that can achieve a high-quality precision service. Finally, a simulation experiment was carried out on service recommendations in the tourism domain, which verified the precision, effectiveness and application value of the service recommendation method.
Keywords: RGPS demand metamodel, RGPS association network, nonfunctional target requirement, LSTM neural network, service recommendation
DOI: 10.3233/IDA-192628
Journal: Intelligent Data Analysis, vol. 23, no. S1, pp. 3-23, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl