Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhou, Deyua; * | Chen, Liangyua | Zhang, Xuana | He, Yulanb
Affiliations: [a] School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, China | [b] School of Engineering and Applied Science, Aston University, UK
Correspondence: [*] Corresponding author: Deyu Zhou, School of Computer Science and Engineering, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Southeast University, Nanjing, Jiangsu 210096, China. E-mail: d.zhou@seu.edu.cn.
Abstract: Social media provides unprecedented opportunities for people to disseminate information and share their opinions and views online. Extracting events from social media platforms such as Twitter could help in understanding what is being discussed. However, event extraction from social text streams poses huge challenges due to the noisy nature of social media posts and dynamic evolution of language. We propose a generic unsupervised framework for exploring events on Twitter which consists of four major steps, filtering, pre-processing, extraction and categorization, and post-processing. Tweets published in a certain time period are aggregated and noisy tweets which do not contain newsworthy events are filtered by the filtering step. The remaining tweets are pre-processed by temporal resolution, part-of-speech tagging and named entity recognition in order to identify the key elements of events. An unsupervised Bayesian model is proposed to automatically extract the structured representations of events in the form of quadruples < entity, keyword, date, location > and further categorize the extracted events into event types. Finally, the categorized events are assigned with the event type labels without human intervention. The proposed framework has been evaluated on over 60 million tweets which were collected for one month in December 2010. A precision of 78.01% is achieved for event extraction using our proposed Bayesian model, outperforming a competitive baseline by nearly 13.6%. Moreover, events are also clustered into coherence groups with the automatically assigned event type labels with an accuracy of 42.57%.
Keywords: Social media, event extraction, bayesian model, unsupervised learning
DOI: 10.3233/IDA-160048
Journal: Intelligent Data Analysis, vol. 21, no. 4, pp. 849-866, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl