Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rodriguez, Juan Manuel* | Godoy, Daniela | Mateos, Cristian | Zunino, Alejandro
Affiliations: ISISTAN Research Institute, Unicen University, Campus Universitario, Tandil (B7001BBO), Argentina
Correspondence: [*] Corresponding author: Juan Manuel Rodriguez, ISISTAN Research Institute, Unicen University, Campus Universitario, Tandil (B7001BBO), Argentina. Tel.: +54 249 4385682 ext. 35; Fax: +54 249 4385681; E-mail:juanmanuel.rodriguez@isistan.unicen.edu.ar
Abstract: Large scale multi-label learning, i.e. the problem of determining the associated set of labels for an instance, is gaining relevance in recent years due to the emergence of several real-world applications. Most notably, the exponential growth of the Social Web where a resource can be labeled by millions of users using one or more tags, i.e. a resource can be associated to several labels at the same time. A well-known approach for multi-label classification is the Binary Relevance (BR) algorithm which trains a binary classifier for each label independently. However, the serial implementation of BR is not suitable for medium or large datasets due to the time and computational resources required for training. For example, training classifiers for mid-size datasets using MULAN implementation of BR might take several weeks. This paper discusses a parallel implementation of the MULAN BR technique that harnesses the computational power of nowadays multi-core processors. Our implementation presents a speed-up in the training phase of up to 12 times when compared to the original MULAN implementation. In addition, the cross-validation technique of MULAN had huge RAM requirements, making it unusable with large datasets. Therefore, we have overcome this limitation by using compact data structures and taking advantage of disk caching. We have also compared our implementation against scikit-learn, a popular tool for data mining and data analysis, showing significant improvements in speed-up.
Keywords: Binary relevance classification, multi-core programming, parallel classification, multi-label classification
DOI: 10.3233/IDA-150375
Journal: Intelligent Data Analysis, vol. 21, no. 2, pp. 329-352, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl