Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Keke
Affiliations: Ohio Center of Excellence in Knowledge-enabled Computing (Kno.e.sis), Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, USA. Tel.: +1 937 775 4642; E-mail: keke.chen@wright.edu
Abstract: Interactive visual cluster analysis is the most intuitive way for finding clustering patterns, validating algorithmic clustering results, understanding data clusters with domain knowledge, and refining cluster definitions. The most challenging step is visualizing multidimensional data and allowing user to interactively explore the data to identify clustering structures. In this paper, we systematically study the star-coordinate based visualization models and propose the optimized design that presents the best visualization results and supports the most efficient interaction methods. We explain the intuition behind the models and their link with random projection, and then optimize the visual design in terms of the efficiency of visual presentation and interactive operations. We also discuss the randomized visualization generation method, which can be used to generate batches of meaningful visualization results in parallel for big data. Finally, we present the experimental evaluation for the optimal design of models. This study is critical to generating effective visualization and minimizing the computational cost for visualizing data clusters for big data in the cloud.
Keywords: Interactive multidimensional data visualization, visual cluster analysis, star-coordinate models, big data
DOI: 10.3233/IDA-140633
Journal: Intelligent Data Analysis, vol. 18, no. 2, pp. 117-136, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl