Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Dynamic Networks and Knowledge Discovery
Guest editors: Ruggero G. Pensaxy, Francesca Corderoy, Céine Rouveirolz and Rushed Kanawatiz
Article type: Research Article
Authors: Prado, Adrianaa; * | Jeudy, Baptisteb | Fromont, Elisab | Diot, Fabienb; c
Affiliations: [a] Université de Lyon, CNRS, INSA-Lyon, LIRIS, France | [b] Université de Lyon, Université de St-Etienne, UMR CNRS 5516, Laboratoire Hubert-Curien, France | [c] Alcatel-Lucent Bell Labs, Centre de Villarceaux, Nozay, France | [x] IRPI-CNR, Torino, Italy | [y] University of Torino, Torino, Italy | [z] University of Paris-Nord, Paris, France
Correspondence: [*] Corresponding author: Adriana Prado, Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR 5205, F-69621, France. E-mail: adriana.bechara-prado@insa-lyon.fr.
Abstract: Dynamic graph mining is the task of searching for subgraph patterns that capture the evolution of a dynamic graph. In this paper, we are interested in mining dynamic graphs in videos. A video can be regarded as a dynamic graph, whose evolution over time is represented by a series of plane graphs, one graph for each video frame. As such, subgraph patterns in this series may correspond to objects that frequently appear in the video. Furthermore, by associating spatial information to each of the nodes in these graphs, it becomes possible to track a given object through the video in question. We present, in this paper, two plane graph mining algorithms, called plagram and dyplagram, for the extraction of spatiotemporal patterns. A spatiotemporal pattern is a set of occurrences of a given subgraph pattern which are not too far apart w.r.t time nor space. Experiments demonstrate that our algorithms are effective even in contexts where general-purpose algorithms would not provide the complete set of frequent subgraphs. We also show that they give promising results when applied to object tracking in videos.
Keywords: Dynamic graphs, graph mining, video applications, plane graphs
DOI: 10.3233/IDA-120568
Journal: Intelligent Data Analysis, vol. 17, no. 1, pp. 71-92, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl