Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Dynamic Networks and Knowledge Discovery
Guest editors: Ruggero G. Pensaxy, Francesca Corderoy, Céine Rouveirolz and Rushed Kanawatiz
Article type: Research Article
Authors: Berlingerio, Michelea; * | Coscia, Michelea; b | Giannotti, Foscaa | Monreale, Annaa; b | Pedreschi, Dinob
Affiliations: [a] ISTI – CNR, Area della Ricerca di Pisa, Pisa, Italy | [b] Computer Science Dep., University of Pisa, Pisa, Italy | [x] IRPI-CNR, Torino, Italy | [y] University of Torino, Torino, Italy | [z] University of Paris-Nord, Paris, France
Correspondence: [*] Corresponding author: Michele Berlingerio, ISTI – CNR, Area della Ricerca di Pisa, Pisa, Italy. E-mail: Michele.Berlingerio@isti.cnr.it.
Abstract: Within the large body of research in complex network analysis, an important topic is the temporal evolution of networks. Existing approaches aim at analyzing the evolution on the global and the local scale, extracting properties of either the entire network or local patterns. In this paper, we focus on detecting clusters of temporal snapshots of a network, to be interpreted as eras of evolution. To this aim, we introduce a novel hierarchical clustering methodology, based on a dissimilarity measure (derived from the Jaccard coefficient) between two temporal snapshots of the network, able to detect the turning points at the beginning of the eras. We devise a framework to discover and browse the eras, either in top-down or a bottom-up fashion, supporting the exploration of the evolution at any level of temporal resolution. We show how our approach applies to real networks and null models, by detecting eras in an evolving co-authorship graph extracted from a bibliographic dataset, a collaboration graph extracted from a cinema database, and a network extracted from a database of terrorist attacks; we illustrate how the discovered temporal clustering highlights the crucial moments when the networks witnessed profound changes in their structure. Our approach is finally boosted by introducing a meaningful labeling of the obtained clusters, such as the characterizing topics of each discovered era, thus adding a semantic dimension to our analysis.
Keywords: Evolution of networks, turning points, semantic dimension
DOI: 10.3233/IDA-120566
Journal: Intelligent Data Analysis, vol. 17, no. 1, pp. 27-48, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl