Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Knowledge Discovery from Data Streams
Guest editors: J. Gama, A. Ganguly, O. Omitaomu, R. Vatsavai and M. Gaber
Article type: Research Article
Authors: Rodrigues, Pedro Pereiraa; b | Gama, Joãoa; c; *
Affiliations: [a] LIAAD – INESC Porto L.A. Rua de Ceuta, 118 - 6 andar, 4050-190 Porto, Portugal | [b] Faculty of Sciences of the University of Porto, Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal | [c] Faculty of Economics of the University of Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal
Correspondence: [*] Corresponding author. E-mail: jgama@fep.up.pt.
Abstract: Sensors distributed all around electrical-power distribution networks produce streams of data at high-speed. From a data mining perspective, this sensor network problem is characterized by a large number of variables (sensors), producing a continuous flow of data, in a dynamic non-stationary environment. Companies make decisions to buy or sell energy based on load profiles and forecast. In this work we analyze the most relevant data mining problems and issues: continuously learning clusters and predictive models, model adaptation in large domains, and change detection and adaptation. The goal is to continuously maintain a clustering model, defining profiles, and a predictive model able to incorporate new information at the speed data arrives, detecting changes and adapting the decision models to the most recent information. We present experimental results in a large real-world scenario, illustrating the advantages of the continuous learning and its competitiveness against Wavelets based prediction. We also propose a light electrical load visualization system which enhances the ability to inspect forecast results in mobile devices.
Keywords: Electricity demand forecast, data streams, sequential clustering, incremental neural networks
DOI: 10.3233/IDA-2009-0377
Journal: Intelligent Data Analysis, vol. 13, no. 3, pp. 477-496, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl