Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Horman, Yoav | Kaminka, Gal A.
Affiliations: The MAVERICK Group, Department of Computer Science, Bar-Ilan University, Israel. E-mail: hormany@cs.biu.ac.il, galk@cs.biu.ac.il
Note: [1] This research was supported in part by BSF grant #2002401.
Abstract: Unsupervised sequence learning is important to many applications. A learner is presented with unlabeled sequential data, and must discover sequential patterns that characterize the data. Popular approaches to such learning include (and often combine) frequency-based approaches and statistical analysis. However, the quality of results is often far from satisfactory. Though most previous investigations seek to address method-specific limitations, we instead focus on general (method-neutral) limitations in current approaches. This paper takes two key steps towards addressing such general quality-reducing flaws. First, we carry out an in-depth empirical comparison and analysis of popular sequence learning methods in terms of the quality of information produced, for several synthetic and real-world datasets, under controlled settings of noise. We find that both frequency-based and statistics-based approaches (i) suffer from common statistical biases based on the length of the sequences considered; (ii) are unable to correctly generalize the patterns discovered, thus flooding the results with multiple instances (with slight variations) of the same pattern. We additionally show empirically that the relative quality of different approaches changes based on the noise present in the data: Statistical approaches do better at high levels of noise, while frequency-based approaches do better at low levels of noise. As our second contribution, we develop methods for countering these common deficiencies. We show how to normalize rankings of candidate patterns such that the relative ranking of different-length patterns can be compared. We additionally show the use of clustering, based on sequence similarity, to group together instances of the same general pattern, and choose the most general pattern that covers all of these. The results show significant improvements in the quality of results in all methods, and across all noise settings.
Keywords: Sequence learning, sequential patterns, sequence mining
DOI: 10.3233/IDA-2007-11503
Journal: Intelligent Data Analysis, vol. 11, no. 5, pp. 457-480, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl