Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Thornton, Chris; *
Affiliations: Cognitive and Computing Sciences, University of Sussex, Brighton, BN1 9QH, UK
Correspondence: [*] Tel.: +44 1273 678856; E-mail: Christopher.Thornton@firenet.uk.com
Abstract: The paper discusses disparity issues in sensing tasks involving the production of a ‘high-level’ signal from ‘low-level’ signal sources. It introduces an abstraction theory which helps to explain the nature of the problem and point the way to a solution. It proposes a solution based on the use of supervised adaptive methods drawn from artificial intelligence. Finally, it describes a set of empirical experiments which were carried out to evaluate the efficacy of the method.
Keywords: abstraction, sensing, learning, prediction
DOI: 10.3233/IDA-2003-7306
Journal: Intelligent Data Analysis, vol. 7, no. 3, pp. 255-266, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl