Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Moody, Jonathana | Silva, Ricardob | Vanderwaart, Josepha | Ramsey, Josephc | Glymour, Clarkc; d
Affiliations: [a] Computer Science Department Carnegie Mellon University, USA. E-mail: jwmoody@cs.cmu.edu, joev+@cs.cmu.edu | [b] Center for Automated Learning and Discovery Carnegie Mellon University, USA. E-mail: rbas+@cs.cmu.edu | [c] Philosophy Department Carnegie Mellon University, USA. E-mail: jdramsey+@andrew.cmu.edu | [d] Institute for Human and Machine Cognition University of West Florida, USA. E-mail: cg09+@andrew.cmu.edu
Abstract: The ability to identify the mineral composition of rocks and soils is an important tool for the exploration of geological sites. Even though expert knowledge is commonly used for this task, it is desirable to create automated systems with similar or better performance. For instance, NASA intends to design robots that are sufficiently autonomous to perform this task on planetary missions. Spectrometer readings provide one important source of data for identifying sites with minerals of interest. Reflectance spectrometers measure intensities of light reflected from surfaces over a range of wavelengths. Spectral intensity patterns may in some cases be sufficiently distinctive for proper identification of minerals or classes of minerals. For some mineral classes, carbonates for example, specific short spectral intervals are known to carry a distinctive signature. Finding similar distinctive spectral ranges for other mineral classes is not an easy problem. We propose and evaluate data-driven techniques in two stages: first, evaluating algorithms to identify which components are probably present in a given rock; second, trying to improve this classification by automatically searching for spectral ranges optimized for specific classes of minerals. In one set of studies, we partition the whole interval of wavelengths available in our data into sub-intervals, or bins, and use a genetic algorithm to evaluate a candidate selection of subintervals. As an alternative to these computationally expensive search techniques, we present an entropy-based heuristic that gives higher scores for wavelengths more likely to distinguish between classes. Results are presented for four different classes, showing reasonable improvements in identifying some, but not all, of the mineral classes tested.
Keywords: scientific applications, classification, filtering
DOI: 10.3233/IDA-2002-6604
Journal: Intelligent Data Analysis, vol. 6, no. 6, pp. 517-530, 2002
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl