Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rodríguez, Juan J. | Alonso, Carlos J. | Boström, Henrik
Affiliations: Escuala Politecnica Superior, 09006 Burgos, Spain
Note: [1] This work has been supported by the Spanish CYCIT project TAP 99-0344.
Abstract: A supervised classification method for time series, even multivariate, is presented. It is based on boosting very simple classifiers: clauses with one literal in the body. The background predicates are based on temporal intervals. Two types of predicates are used: i) relative predicates, such as “increases” and “stays”, and ii) region predicates, such as “always” and “sometime”, which operate over regions in the domain of the variable. Experiments on different data sets, several of them obtained from the UCI ML and KDD repositories, show that the proposed method is highly competitive with previous approaches.
Keywords: time series classification, interval based literals, boosting, machine learning
DOI: 10.3233/IDA-2001-5305
Journal: Intelligent Data Analysis, vol. 5, no. 3, pp. 245-262, 2001
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl