Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cecchinato, Niccolò | Scagnetto, Ivan* | Toma, Andrea | Drioli, Carlo | Foresti, Gian Luca
Affiliations: Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
Correspondence: [*] Corresponding author: Ivan Scagnetto, Department of Mathematics, Computer Science and Physics, University of Udine, Via delle Scienze 206, 33100 Udine, Italy. E-mail: ivan.scagnetto@uniud.it.
Abstract: Nowadays, set of cooperative drones are commonly used as aerial sensors, in order to monitor areas and track objects of interest (think, e.g., of border and coastal security and surveillance, crime control, disaster management, emergency first responder, forest and wildlife, traffic monitoring). The drones generate a quite large and continuous in time multimodal (audio, video and telemetry) data stream towards a ground control station with enough computing power and resources to store and process it. Hence, due to the distributed nature of this setting, further complicated by the movement and varying distance among drones, and to possible interferences and obstacles compromising communications, a common clock between the nodes is of utmost importance to make feasible a correct reconstruction of the multimodal data stream from the single datagrams, which may be received out of order or with different delays. A framework architecture, using sub-GHz broadcasting communications, is proposed to ensure time synchronization for a set of drones, allowing one to recover even in difficult situations where the usual time sources, e.g. GPS, NTP etc., are not available for all the devices. Such architecture is then implemented and tested using LoRa radios and Raspberry Pi computers. However, other sub-GHz technologies can be used in the place of LoRa, and other kinds of single-board computers can substitute the Raspberry Pis, making the proposed solution easily customizable, according to specific needs. Moreover, the proposal is low cost, since it does not require expensive hardware like, e.g., onboard Rubidium based atomic clocks. Our experiments indicate a worst case skew of about 16 ms between drones clocks, using cheap components commonly available in the market. This is sufficient to deal with audio/video footage at 30 fps. Hence, it can be viewed as a useful and easy to implement architecture helping to maintain a decent synchronization even when traditional solutions are not available.
Keywords: Drones, distributed systems synchronization, real time clock, sub-ghz broadcast, lora, audio/video streaming
DOI: 10.3233/ICA-230723
Journal: Integrated Computer-Aided Engineering, vol. 31, no. 1, pp. 59-75, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl