Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wu, Chia-Long | Lou, Der-Chyuan | Chang, Te-Jen
Affiliations: Department of Aviation & Communication Electronics, Chinese Air Force Institute of Technology, Kaohsiung 820, Taiwan, e-mail: chialongwu@seed.net.tw | Department of Electrical Engineering, Chung Cheng Institute of Technology, National Defense University, Tahsi, Taoyuan 33509, Taiwan, e-mail: dclou@ccit.edu.tw
Abstract: Efficient computation of the modular exponentiations is very important and useful for public-key cryptosystems. In this paper, an efficient parallel binary exponentiation algorithm is proposed which based on the Montgomery multiplication algorithm, the signed-digit-folding (SDF) and common-multiplicand-multiplicand (CMM) techniques. By using the CMM technique of computing the common part from two modular multiplications, the same common part in two modular multiplications can be computed once rather twice, we can thus improve the efficiency of the binary exponentiation algorithm by decreasing the number of modular multiplications. By dividing the bit pattern of the minimal-signed-digit recoding exponent into three equal length parts and using the technique of recording the common parts in the folded substrings, the proposed SDF-CMM algorithm can improve the efficiency of the binary algorithm, thus can further decrease the computational complexity of modular exponentiation. Furthermore, by using the proposed parallel SDF-CMM Montgomery binary exponentiation algorithm, on average the total number of single-precision multiplications can be reduced by about 61.3% and 74.1% as compared with Chang-Kuo-Lin's CMM modular exponentiation algorithm and Ha-Moon's CMM Montgomery modular exponentiation algorithm, respectively.
Keywords: Montgomery reduction algorithm, common-multiplicand-multiplication, signed-digit recoding, modular exponentiation, public-key cryptosystems
Journal: Informatica, vol. 16, no. 3, pp. 449-468, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl