Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dumskis, Valerijonas1 | Sakalauskas, Leonidas2; *
Affiliations: [1] Šiauliai University, Šiauliai, Lithuania | [2] Institute of Mathematics and Informatics, Vilnius University, Lithuania, e-mail: valius.du@svajone.su.lt, leonidas.sakalauskas@mii.vu.lt
Correspondence: [*] Corresponding author.
Abstract: The nonlinear stochastic programming problem involving CVaR in the objective and constraints is considered. Solving the latter problem in a framework of bi-level stochastic programming, the extended Lagrangian is introduced and the related KKT conditions are derived. Next, the sequential simulation-based approach has been developed to solve stochastic problems with CVaR by finite sequences of Monte Carlo samples. The approach considered is grounded by the rule for iterative regulation of the Monte Carlo sample size and the stochastic termination procedure, taking into account the stochastic model risk. The rule is introduced to regulate the size of the Monte Carlo sample inversely proportionally to the square of the stochastic gradient norm allows us to solve stochastic nonlinear problems in a rational way and ensures the convergence. The proposed termination procedure enables us to test the KKT conditions in a statistical way and to evaluate the confidence intervals of the objective and constraint functions in a statistical way as well. The results of the Monte Carlo simulation with test functions and solution of the practice sample of trade-offs of gas purchases, storage and service reliability, illustrate the convergence of the approach considered as well as the ability to solve in a rational way the nonlinear stochastic programming problems handling CVaR in the objective and constraints, with an admissible accuracy, treated in a statistical manner.
Keywords: stochastic programming, Monte Carlo method, stochastic gradient, CVAR
Journal: Informatica, vol. 26, no. 4, pp. 569-591, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl