Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Garg, Aarti | Raghava, Gajendra P.S.
Affiliations: Institute of Microbial Technology, Sector 39A, Chandigarh, India
Note: [] Corresponding author. Tel.: +91 172 269 0557; Fax: +91 172 269 0632; E-mail: raghava@imtech.res.in
Abstract: Most of the prediction methods for secretory proteins require the presence of a correct N-terminal end of the pre-protein for correct classification. As large scale genome sequencing projects sometimes assign the 5'-end of genes incorrectly, many proteins are encoded without the correct N-terminus leading to incorrect prediction. In this study, a systematic attempt has been made to predict secretory proteins irrespective of presence or absence of N-terminal signal peptides (also known as classical and non-classical secreted proteins respectively), using machine-learning techniques; artificial neural network (ANN) and support vector machine (SVM). We trained and tested our methods on a dataset of 3321 secretory and 3654 non-secretory mammalian proteins using five-fold cross-validation technique. First, ANN-based modules have been developed for predicting secretory proteins using 33 physico-chemical properties, amino acid composition and dipeptide composition and achieved accuracies of 73.1%, 76.1% and 77.1%, respectively. Similarly, SVM-based modules using 33 physico-chemical properties, amino acid, and dipeptide composition have been able to achieve accuracies of 77.4%, 79.4% and 79.9%, respectively. In addition, BLAST and PSI-BLAST modules designed for predicting secretory proteins based on similarity search achieved 23.4% and 26.9% accuracy, respectively. Finally, we developed a hybrid-approach by integrating amino acid and dipeptide composition based SVM modules and PSI-BLAST module that increased the accuracy to 83.2%, which is significantly better than individual modules. We also achieved high sensitivity of 60.4% with low value of 5% false positive predictions using hybrid module. A web server SRTpred has been developed based on above study for predicting classical and non-classical secreted proteins from whole sequence of mammalian proteins, which is available from http://www.imtech.res.in/raghava/srtpred/.
Keywords: Classical pathway, non-classical pathway, secretory proteins, prediction, SRTpred, redundancy, dataset size, ANN, SVM, BLAST, PSI-BLAST, N-terminal sequence
Journal: In Silico Biology, vol. 8, no. 2, pp. 129-140, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl