Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jaiswal, Kunal
Affiliations: Department of Bioinformatics & Biotechnology, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India, 173215. Tel.: +91 9971241380; E-mail: kunal.jaiswal@yahoo.com
Abstract: Ubiquitin functions to regulate protein turnover in a cell by closely regulating the degradation of specific proteins. Such a regulatory role is very important, and thus I have analyzed the proteins that are ubiquitin-like, using an artificial neural network, support vector machines and a hidden Markov model (HMM). The methods were trained and tested on a set of 373 ubiquitin proteins and 373 non-ubiquitin proteins, obtained from Entrez protein database. The artificial neural network and support vector machine are trained and tested using both the physicochemical properties and PSSM matrices generated from PSI-BLAST, while in the HMM based method direct sequences are used for training-testing procedures. Further, the performance measures of the methods are calculated for test sequences, i.e. accuracy, specificity, sensitivity and Matthew's correlation coefficients of the methods are calculated. The highest accuracy of 90.2%, specificity of 87.04% and sensitivity of 94.08% was achieved using the support vector machine model with PSSM matrices. While accuracies of 86.82%, 83.37%, 80.18% and 72.11% were obtained for the support vector machine with physicochemical properties, neural network with PSSM matrices, neural networks with physicochemical properties, and hidden Markov model, respectively. As the accuracy for SVM model is better both using physicochemical properties and the PSSM matrices, it is concluded that kernel methods such as SVM outperforms neural networks and hidden Markov models.
Keywords: Ubiquitin proteins, support vector machine, artificial neural networks, hidden Markov model, physicochemical properties, PSI-BLAST, PSSM Matrices, binary classifier
Journal: In Silico Biology, vol. 7, no. 6, pp. 559-568, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl