Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Saha, Sudipto | Raghava, Gajendra P.S.
Affiliations: Institute of Microbial Technology Sector-39A, Chandigarh, India
Note: [] Corresponding author. Tel.: +91 172 2690557; Fax: +91 172 2690632; E-mail: raghava@imtech.res.in; Web: http://www.imtech.res.in/raghava/
Abstract: This paper describes a method developed for predicting bacterial toxins from their amino acid sequences. All the modules, developed in this study, were trained and tested on a non-redundant dataset of 150 bacterial toxins that included 77 exotoxins and 73 endotoxins. Firstly, support vector machines (SVM) based modules were developed for predicting the bacterial toxins using amino acids and dipeptides composition and achieved an accuracy of 96.07% and 92.50%, respectively. Secondly, SVM based modules were developed for discriminating entotoxins and exotoxins, using amino acids and dipeptides composition and achieved an accuracy of 95.71% and 92.86%, respectively. In addition, modules have been developed for classifying the exotoxins (e.g. activate adenylate cyclase, activate guanylate cyclase, neurotoxins) using hidden Markov models (HMM), PSI-BLAST and a combination of the two and achieved overall accuracy of 95.75%, 97.87% and 100%, respectively. Based on the above study, a web server called 'BTXpred' has been developed, which is available at http://www.imtech.res.in/raghava/btxpred/. Supplementary information is available at http://www.imtech.res.in/raghava/btxpred/supplementary.html.
Keywords: Bacterial toxins, exotoxins, endotoxins, BTXpred, prediction server
Journal: In Silico Biology, vol. 7, no. 4-5, pp. 405-412, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl