Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Perić, Zoran H. | Dinčić, Milan R. | Petković, Marko D.
Affiliations: Faculty of Electrical Engineering, University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia. E-mails: zoran.peric@elfak.ni.ac.yu; mdincha@hotmail.com | Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia. E-mail: dexterofnis@gmail.com
Abstract: In this paper a new model for compression of Laplacian source is given. This model consists of hybrid quantizer whose output levels are coded with Golomb-Rice code. Hybrid quantizer is combination of uniform and nonuniform quantizer, and it can be considered as generalized quantizer, whose special cases are uniform and nonuniformquantizers. We propose new generalized optimal compression function for companding quantizers. Hybrid quantizer has better performances (smaller bit-rate and complexity for the same quality) than both uniform and nonuniformquantizers, because it joins their good characteristics. Also, hybrid quantizer allows great flexibility, because there are many combinations of number of levels in uniform part and in nonuniformpart, which give similar quality. Each of these combinations has different bit-rate and complexity, so we have freedom to choose combination which is the most appropriate for our application, in regard to quality, bit-rate and complexity. We do not have such freedom of choice when we use uniform or nonuniform quantizers. Until now, it has been thought that uniform quantizer is the most appropriate to use with lossless code, but in this paper we show that combination of hybrid quantizer and lossless code gives better performances. As lossless code we use Golomb-Rice code because it is especially suitable for Laplacian source since it gives average bit-rate very close to the entropy and it is easier for implementation than Huffman code. Golomb-Rice code is used in many modern compression standards. Our model can be used for compression of all signals with Laplacian distribution.
Keywords: hybrid quantizer, uniform quantizer, companding nonuniformquantizer, Golomb-Rice code, lossy compression
DOI: 10.3233/FI-2010-225
Journal: Fundamenta Informaticae, vol. 98, no. 2-3, pp. 233-256, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl