Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Intelligent Data Analysis in Granular Computing
Article type: Research Article
Authors: Leng, Jinsong | Hong, Tzung-Pei
Affiliations: School of Computer and Security Science, Edith Cowan University WA 6050, Australia. E-mail: J.Leng@ecu.edu.au | Department of Computer Science and Information Engineering National University of Kaohsiung, Taiwan. E-mail: tphong@nuk.edu.tw
Abstract: Outlier detection in high dimensional data sets is a challenging data mining task. Mining outliers in subspaces seems to be a promising solution, because outliers may be embedded in some interesting subspaces. Searching for all possible subspaces can lead to the problem called "the curse of dimensionality". Due to the existence of many irrelevant dimensions in high dimensional data sets, it is of paramount importance to eliminate the irrelevant or unimportant dimensions and identify interesting subspaces with strong correlation. Normally, the correlation among dimensions can be determined by traditional feature selection techniques or subspace-based clustering methods. The dimension-growth subspace clustering techniques can find interesting subspaces in relatively lower dimension spaces, while dimension-reduction approaches try to group interesting subspaces with larger dimensions. This paper aims to investigate the possibility of detecting outliers in correlated subspaces. We present a novel approach by identifying outliers in the correlated subspaces. The degree of correlation among dimensions is measured in terms of the mean squared residue. In doing so, we employ a dimension-reduction method to find the correlated subspaces. Based on the correlated subspaces obtained, we introduce another criterion called "shape factor" to rank most important subspaces in the projected subspaces. Finally, outliers are distinguished from most important subspaces by using classical outlier detection techniques. Empirical studies show that the proposed approach can identify outliers effectively in high dimensional data sets.
Keywords: Outlier Detection, Subspace Outlier Detection, Subspace Clustering, Shape Factor, Dimension Reduction
DOI: 10.3233/FI-2010-217
Journal: Fundamenta Informaticae, vol. 98, no. 1, pp. 71-86, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl