Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Progress on Multi-Relational Data Mining
Article type: Research Article
Authors: Meert, Wannes | Struyf, Jan | Blockeel, Hendrik
Affiliations: Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium. {wannes.meert, jan.struyf, hendrik.blockeel}@cs.kuleuven.be
Note: [] Address for correspondence: Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
Abstract: Causal relations are present in many application domains. Causal Probabilistic Logic (CP-logic) is a probabilistic modeling language that is especially designed to express such relations. This paper investigates the learning of CP-logic theories (CP-theories) from training data. Its first contribution is SEM-CP-logic, an algorithm that learns CP-theories by leveraging Bayesian network (BN) learning techniques. SEM-CP-logic is based on a transformation between CP-theories and BNs. That is, the method applies BN learning techniques to learn a CP-theory in the form of an equivalent BN. To this end, certain modifications are required to the BN parameter learning and structure search, the most important one being that the refinement operator used by the search must guarantee that the constructed BNs represent valid CP-theories. The paper's second contribution is a theoretical and experimental comparison between CP-theory and BN learning. We show that the most simple CP-theories can be represented with BNs consisting of noisy-OR nodes, while more complex theories require close to fully connected networks (unless additional unobserved nodes are introduced in the network). Experiments in a controlled artificial domain show that in the latter cases CP-theory learning with SEM-CP-logic requires fewer training data than BN learning. We also apply SEM-CP-logic in a medical application in the context of HIV research, and show that it can compete with state-of-the-art methods in this domain.
Keywords: Statistical Relational Learning, CP-logic
Journal: Fundamenta Informaticae, vol. 89, no. 1, pp. 131-160, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl