Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Karpinski, Marek | Kowaluk, Miroslaw | Lingas, Andrzej
Affiliations: Department of Computer Science, University of Bonn, Bonn, Germany | Institute of Informatics, Warsaw University, Banacha 2, Warsaw, Poland | Department of Computer Science, Lund University, 22100 Lund, Sweden
Abstract: The max-bisection problem is to find a partition of the vertices of a graph into two equal size subsets that maximizes the number of edges with endpoints in both subsets. We obtain new improved approximation ratios for the max-bisection problem on the low degree k-regular graphs for 3≤k≤8, by deriving some improved transformations from a maximum cut into a maximum bisection. In the case of three regular graphs we obtain an approximation ratio of 0.854, and in the case of four and five regular graphs, approximation ratios of 0.805, and 0.812, respectively.
Keywords: graph bisection, approximation algorithms, regular graphs
Journal: Fundamenta Informaticae, vol. 62, no. 3-4, pp. 369-375, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl