Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Karayiannis, Nicolaos B.
Affiliations: Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204-4793, USA. Karayiannis@UH.EDU
Note: [] Address for correspondence: Department of Electrical and Computer Engineering, University of Houston Houston, Texas 77204-4793, USA
Abstract: This paper proposes a framework for developing a broad variety of soft clustering and learning vector quantization (LVQ) algorithms based on gradient descent minimization of a reformulation function. According to the proposed axiomatic approach to learning vector quantization, the development of specific algorithms reduces to the selection of a generator function. A linear generator function leads to the fuzzy c-means (FCM) and fuzzy LVQ (FLVQ) algorithms while an exponential generator function leads to entropy constrained fuzzy clustering (ECFC) and entropy constrained LVQ (ECLVQ) algorithms. The reformulation of clustering and LVQ algorithms is also extended to supervised learning models through an axiomatic approach proposed for reformulating radial basis function (RBF) neural networks. This approach results in a broad variety of admissible RBF models, while the form of the radial basis functions is determined by a generator function. This paper shows that gradient descent learning makes reformulated RBF neural networks an attractive alternative to conventional feed-forward neural networks.
Keywords: fuzzy clustering, learning vector quantization, reformulation, generator function, radial basis neural networks, function approximation, gradient descent learning
DOI: 10.3233/FI-1999-371208
Journal: Fundamenta Informaticae, vol. 37, no. 1-2, pp. 137-175, 1999
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl