Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Marquer, Yoann; *; †
Affiliations: Université Paris-Est Créteil (UPEC), Laboratoire d’Algorithmique, Complexité et Logique (LACL), IUT Sénart-Fontainebleau, France. marquer.yoann@hotmail.fr
Correspondence: [†] Address for correspondence: Université Paris-Est Créteil (UPEC), Laboratoire d’Algorithmique, Complexité et Logique (LACL), IUT Sénart-Fontainebleau, France.
Note: [*] This work is partially supported by the french program ANR 12 BS02 007 01.
Abstract: According to the Church-Turing Thesis, effectively calculable functions are functions computable by a Turing machine. Models that compute these functions are called Turing-complete. For example, we know that common imperative languages (such as C, Ada or Python) are Turing complete (up to unbounded memory). Algorithmic completeness is a stronger notion than Turing-completeness. It focuses not only on the input-output behavior of the computation but more importantly on the step-by-step behavior. Moreover, the issue is not limited to partial recursive functions, it applies to any set of functions. A model could compute all the desired functions, but some algorithms (ways to compute these functions) could be missing (see [10, 27] for examples related to primitive recursive algorithms). This paper’s purpose is to prove that common imperative languages are not only Turing-complete but also algorithmically complete, by using the axiomatic definition of the Gurevich’s Thesis and a fair bisimulation between the Abstract State Machines of Gurevich (defined in [16]) and a version of Jones’ While programs. No special knowledge is assumed, because all relevant material will be explained from scratch.
Keywords: Algorithm, ASM, Completeness, Computability, Imperative, Simulation
DOI: 10.3233/FI-2019-1824
Journal: Fundamenta Informaticae, vol. 168, no. 1, pp. 51-77, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl