Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kaniecki, Mariusz | Kosakowska, Justyna | Malicki, Piotr | Marczak, Grzegorz
Affiliations: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland. kanies@mat.umk.pl; justus@mat.umk.pl; pmalicki@mat.umk.pl; lielow@mat.umk.pl
Note: [] Address for correspondence: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Abstract: We construct a horizontal mesh algorithm for a study of a special type of mesh root systems of connected positive loop-free edge-bipartite graphs Δ, with n ≥ 2 vertices, in the sense of [SIAM J. Discrete Math. 27 (2013), 827–854] and [Fund. Inform. 124 (2013), 309-338]. Given such a loop-free edge-bipartite graph Δ, with the non-symmetric Gram matrix $\Gcaron_ \Delta \isin \mathbb{M}_n(\mathbb{Z})$ and the Coxeter transformation $\Phi_A : \mathbb{Z}^n \rarr \mathbb{Z}^n$ defined by a quasi-triangular matrix morsification $A \isin \mathbb{M}_n(\mathbb{Z})$ of Δ satisfying a non-cycle condition, our combinatorial algorithm constructs a ΦA-mesh root system structure $\Gamma(\Rscr_\Delta, \Phi_A)$ on the finite set of all ΦA-orbits of the irreducible root system $\Rscr_\Delta := {v \isin \mathbb{Z}^n; v \cdot \Gcaron_\Delta \cdot v^{tr} = 1}$. We apply the algorithm to a graphical construction of a ΦI - mesh root system structure $\Gamma(\Rscr_I, \Phi_I)$ on the finite set of ΦI -orbits of roots of any poset I with positive definite Tits quadratic form $\qIcirc : \mathbb{Z}_I \rarr \mathbb{Z}$.
Keywords: combinatorial algorithm, edge-bipartite graph, Dynkin diagram, root system, mesh translation quiver, quadratic form, Coxeter polynomial
DOI: 10.3233/FI-2015-1162
Journal: Fundamenta Informaticae, vol. 136, no. 4, pp. 345-379, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl