Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Rough Sets and Fuzzy Sets
Article type: Research Article
Authors: Wen, Liu-Yinga | Min, Fana; *
Affiliations: [a] School of Computer Science, Southwest Petroleum University, Chengdu 610500, China. minfanphd@163.com
Correspondence: [*] Address for correspondence: School of Computer Science, Southwest Petroleum University, Chengdu 610500, China; This work is in part supported by the National Science Foundation of China under Grant No. 61379089.
Abstract: Symbolic value partitioning is a knowledge reduction technique in the field of data mining. In this paper, we propose a granular computing approach for the partitioning task that includes granule construction and granule selection algorithms. The granule construction algorithm takes advantage of local information associated with each attribute. A binary attribute value taxonomy tree is built to merge these attribute values in a bottom-up manner using information-loss heuristics. The use of a balancing technique enables us to control different nodes in the same level to have approximately the same size. The granule selection algorithm uses global information about all of the attributes in the decision system. Hence, nodes across the taxonomy forest of all attributes are selected and expanded using information-gain heuristics. We present a series of experimental results that demonstrate the effectiveness of the proposed approach in terms of reducing the data size and improving the resulting classification accuracy.
Keywords: Attribute taxonomy tree, granular computing, information entropy, symbolic value partition
DOI: 10.3233/FI-2015-1297
Journal: Fundamenta Informaticae, vol. 142, no. 1-4, pp. 337-371, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl