Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Rough Sets and Fuzzy Sets
Article type: Research Article
Authors: Inuiguchi, Masahiroa; *
Affiliations: [a] Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka, 560-8531, Japan. inuiguti@sys.es.osaka-u.ac.jp
Correspondence: [*] Address for correspondence: Graduate School of Engineering Science, Osaka University Toyonaka, 560-8531, Japan
Abstract: In this paper we focus on generalizations of the classical rough set approach to fuzzy environments. There are two aspects of rough set approaches: classification and approximation. In the classification aspect, by rough set approaches we can classify objects into positive and negative examples of a class. On the other hand, in the approximation aspect, by rough set approaches we obtain the lower and upper approximations of a class. The former model works better in the attribute reduction while the latter model works better in the rule induction. In the setting of the classical rough set approach, the lower approximation is nothing but the set of positive examples and the upper approximation is the complementary set of negative examples. However, these equalities do not always hold in the generalized settings. Most of fuzzy rough set models proposed earlier are defined in the classification aspect. The approaches based on those models do not always work well in approximating fuzzy subsets. In this paper we define the fuzzy rough set models in the approximation aspect. We investigate their fundamental properties and demonstrate the advantages of fuzzy set approximation. Finally we consider attribute reduction based on the proposed fuzzy rough set models.
Keywords: rough sets, fuzzy sets, inclusion degree, certainty qualification, implication function
DOI: 10.3233/FI-2015-1283
Journal: Fundamenta Informaticae, vol. 142, no. 1-4, pp. 21-51, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl