Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Cellular Automata and Models of Computation
Article type: Research Article
Authors: Dennunzio, Alberto | Di Lena, Pietro | Formenti, Enrico | Margara, Luciano
Affiliations: Università degli Studi di Milano–Bicocca, Dipartimento di Informatica, Sistemistica e Comunicazione, Viale Sarca 336, 20126 Milano, Italy. dennunzio@disco.unimib.it | Università degli Studi di Bologna, Dipartimento di Informatica - Scienza e Ingegneria, Mura Anteo Zamboni 7, 40127 Bologna, Italy. dilena@cs.unibo.it | Université de Nice-Sophia Antipolis, Laboratoire I3S, 2000 Route des Colles, 06903 Sophia Antipolis, France. enrico.formenti@unice.fr | Università degli Studi di Bologna, Dipartimento di Informatica - Scienza e Ingegneria, Mura Anteo Zamboni 7, 40127 Bologna, Italy. margara@cs.unibo.it
Note: [] Address for correspondence: Università degli Studi di Milano–Bicocca, Dipartimento di Informatica, Sistemistica e Comunicazione, Viale Sarca 336, 20126 Milano, Italy
Abstract: We investigate the relationships between dynamical complexity and the set of periodic configurations of surjective Cellular Automata. We focus on the set of strictly temporally periodic configurations, i.e., the set of those configurations which are temporally but not spatially periodic for a given surjective automaton. The cardinality of this set turns out to be inversely related to the dynamical complexity of the cellular automaton. In particular, we show that for surjective Cellular Automata, the set of strictly temporally periodic configurations has strictly positive measure if and only if the cellular automaton is equicontinuous. Furthermore, we show that the set of strictly temporally periodic configurations is dense for almost equicontinuous surjective cellular automata, while it is empty for the positively expansive ones. In the class of additive cellular automata, the set of strictly temporally periodic points can be either dense or empty. The latter happens if and only if the cellular automaton is topologically transitive. This is not true for general transitive Cellular Automata, where the set of of strictly temporally periodic points can be non-empty and non-dense.
Keywords: cellular automata, symbolic dynamics, spatially and temporally periodic configurations
DOI: 10.3233/FI-2013-877
Journal: Fundamenta Informaticae, vol. 126, no. 2-3, pp. 183-199, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl