Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Cognitive Informatics and Computational Intelligence: Theory and Applications
Article type: Research Article
Authors: Peters, James F. | Chitcharoen, Doungrat
Affiliations: Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, Manitoba R3T 51-V6, Canada and School of Mathematics, University of Hyderabad, Hyderabad-500046, India. james.peters3@ad.umanitoba.ca | Computational Intelligence Laboratory, Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, Manitoba R3T 51-V6, Canada. doungratmath@gmail.com
Note: [] Address for correspondence: Computational Intelligence Laboratory, University of Manitoba, 75A Chancellor's Circle, Winnipeg, Manitoba R3T 51-V6, Canada
Abstract: This paper introduces sufficiently near visual neighbourhoods of points and neighbourhoods of sets in digital image flow graphs (NDIFGs). An NDIFG is an extension of a Pawlak flow graph. The study of sufficiently near neighbourhoods in NDIFGs stems from recent work on near sets and topological spaces via near and far, especially in terms of visual neighbourhoods of points that are sufficiently near each other. From a topological perspective, non-spatially near sets represent an extension of proximity space theory and the original insight concerning spatially near sets by F. Riesz at the International Congress of Mathematicians (ICM) in 1908. In the context of Herrlich nearness, sufficiently near neighbourhoods of sets in NDIFGs provide a new perspective on topological structures in NDIFGs. The practical implications of this work are significant. With the advent of a study of the nearness of open as well as closed neighbourhods of points and of sets in NDIFGs, it is now possible to do information mining on a more global level and achieve new insights concerning the visual information embodied in the images that provide input to an NDIFG.
Keywords: Digital image, near sets, visual neighbourhood, Pawlak flow graphs, sufficiently near, topological structure
DOI: 10.3233/FI-2013-830
Journal: Fundamenta Informaticae, vol. 124, no. 1-2, pp. 175-196, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl