Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chojnacki, Szymona; * | Kłopotek, Mieczysława
Affiliations: [a] Institute of Computer Science, Polish Academy of Sciences, Jana Kazimierza 5, 01-248 Warszawa, Poland. sch@ipipan.waw.pl; klopotek@ipipan.waw.pl
Note: [*] Address for correspondence: Institute of Computer Science, Polish Academy of Sciences, Jana Kazimierza 5, 01-248 Warszawa, Poland.
Abstract: Latency of user-based and item-based recommenders is evaluated. The two algorithms can deliver high quality predictions in dynamically changing environments. However, their response time depends not only on the size, but also on the structure of underlying datasets. This constitutes a major drawback when compared to two other competitive approaches i.e. content-based and model-based systems. Therefore, we believe that there exists a need for comprehensive evaluation of the latency of the two algorithms. During a typical worst case scenario analysis of collaborative filtering algorithms two assumption are made. The first assumption says that data are stored in dense collections. The second assumption states that large amount of computations can be performed in advance during the training phase. As a result it is advised to deploy user-based system when the number of users is relatively small. Item-based algorithms are believed to have better technical properties when the number of items is small. We consider a situation in which the two assumptions are not necessarily met. We show that even though the latency of the two methods depends heavily on the proportion of users to items, this factor does not differentiate the two methods. We evaluate the algorithms with several real-life datasets. We augment the analysis with both graph-theoretical and experimental techniques.
DOI: 10.3233/FI-2015-1233
Journal: Fundamenta Informaticae, vol. 139, no. 3, pp. 229-248, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl