Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Concept Lattices and Their Applications
Article type: Research Article
Authors: Missaoui, Rokia | Nourine, Lhouari | Renaud, Yoan
Affiliations: Université du Québec en Outaouais, Département d'informatique et d'ingénierie, 101, rue St-Jean Bosco, Gatineau (Québec), J8X 3X7 Canada, Rokia.missaoui@uqo.ca | LIMOS - CNRS UMR 6158, Université Blaise Pascal, Complexe scientifique des Cézeaux, 63 177 Aubičre Cedex – France, nourine@isima.fr | LIRIS - CNRS UMR 5208, INSA Lyon, 7 av, Jean Capelle, 69 621 Villeurbanne Cedex France, yoan.renaud@gmail.com
Note: [] We acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC). Address for correspondence: Département d'informatique et d'ingénierie, Université du Québec en Outaouais, 101, rue St-Jean Bosco, Gatineau (Québec), Canada J8X 3X7
Note: [] We are grateful to the French National Research Agency (ANR) for the funding of the DAG project. All the authors express their gratitude to the Guest Editors and the anonymous reviewers for their help and useful suggestions.
Note: [] Address for correspondence: Département d'informatique et d'ingénierie, Université du Québec en Outaouais, 101, rue St-Jean Bosco, Gatineau (Québec), Canada J8X 3X7
Abstract: The objective of this article is to define an approach towards generating implications with (or without) negation when only a formal context K = (G, M, I) is provided. To that end, we define a two-step procedure which first (i) computes implications whose premise is a key in the context K | $\tilde{\rm K}$ representing the apposition of the context K and its complementary $\tilde{\rm K}$ with attributes in $\tilde{\rm M}$ (negative attributes), and then (ii) uses an inference axiom we have defined to produce the whole set of implications.
Keywords: Formal concept analysis, implication, negation, key, inference system
DOI: 10.3233/FI-2012-659
Journal: Fundamenta Informaticae, vol. 115, no. 4, pp. 357-375, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl