Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Plasenzotti, R.; | Stoiber, B. | Posch, M. | Windberger, U.
Affiliations: Institute of Biomedical Research, University of Vienna, Austria | Institute of Medical Statistics, University of Vienna, Austria
Note: [] Corresponding author: Roberto Plasenzotti, DVM, Institute for Biomedical Research, University of Vienna, General Hospital, Währingergürtel 18‐20, 1090 Vienna, Austria. Tel.: +43 (0)1 40400 5223; Fax: +43 (0)1 40400 5229; E‐mail: roberto.plasenzotti@meduniwien.ac.at.
Abstract: Comparative animal studies showed the wide variation of whole blood and plasma viscosity, and erythrocyte aggregation among mammalian species. Whole blood viscosity and red blood cell aggregation is influenced by red cell fluidity. To evaluate differences in erythrocyte deformability in mammals, three species were investigated, whose erythrocytes have a different aggregation property: horse, as a species with high, dog with medium, and sheep with almost unmeasurable aggregation tendency. Erythrocyte deformability was tested ektacytometrically (Elongation Index [EI], LORCA, Mechatronics, Hoorn, Netherlands) at shear stresses from 0.30 to 53.06 Pa. Equine erythrocytes showed EI‐values from 0.047 at low shear stress to 0.541 at high shear stress. The EI from dog's erythrocytes ranged from 0.035 to 0.595. Sheep's erythrocytes had an EI of 0.005 at low and 0.400 at high shear stress. Although it might be presumed from the aggregation property that horse had the highest EI among the three species, the EI of canine erythrocytes exceeded the value in horses by 10% at high shear stress. Further, equine erythrocytes started to deform at higher shear stresses (1.69 Pa) than did canine and ovine cells, whose EI increased continuously with increasing shear stress. At moderate shear stress (1–5 Pa) deformability was even higher in the sheep than in the horse. However, at shear stresses higher than 5.34 Pa, equine red cell elongation clearly exceeded the values of sheep. We conclude that erythrocyte elongation is different between the animal species, not clearly linked with the aggregation property, and that the degree of deformability at various shear stresses is species‐specific.
Keywords: Erythrocyte, deformability, fluidity, whole blood viscosity, aggregation, rheology
Journal: Clinical Hemorheology and Microcirculation, vol. 31, no. 2, pp. 105-111, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl