Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected post-conference papers of the 38th Conference of the German Society for Clinical Microcirculation and Hemorheology, 21-23 November 2019, Braunschweig, Germany
Guest editors: P. Wiggermann, A. Krüger-Genge and F. Jung
Article type: Research Article
Authors: Tung, Wing Taia; b | Zou, Jiea | Sun, Xianleia; b | Wang, Weiweia | Gould, Oliver E.C.a | Kratz, Karla | Ma, Nana; c; * | Lendlein, Andreasa; b; c; *
Affiliations: [a] Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany | [b] University of Potsdam, Potsdam, Germany | [c] Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
Correspondence: [*] Corresponding authors: Nan Ma. E-mail: nan.ma@hzg.de and Andreas Lendlein. E-mail: andreas.lendlein@hzg.de.
Abstract: Microfibers with a core-shell structure can be produced by co-axial electrospinning, allowing for the functionalization of the outer layer with bioactive molecules. In this study, a thermoplastic, degradable polyesteretherurethane (PEEU), consisting of poly(p-dioxanone) (PPDO) and poly(ɛ-caprolactone) (PCL) segments with different PPDO to PCL weight ratios, were processed into fiber meshes by co-axial electrospinning with gelatin. The prepared PEEU fibers have a diameter of 1.3±0.5 μm and an elastic modulus of around 5.1±1.0 MPa as measured by tensile testing in a dry state at 37°C, while the PEEU/Gelatin core-shell fibers with a gelatin content of 12±6 wt% and a diameter of 1.5±0.5 μm possess an elastic modulus of 15.0±1.1 MPa in a dry state at 37 °C but as low as 0.7±0.7 MPa when hydrated at 37 °C. Co-axial electrospinning allowed for the homogeneous distribution of the gelatin shell along the whole microfiber. Gelatin with conjugated Fluorescein (FITC) remained stable on the PEEU fibers after 7 days incubation in Phosphate-buffered saline (PBS) at 37 °C. The gelatin coating on PEEU fibers lead to enhanced human adipose tissue derived mesenchymal stem cell (hADSC) attachment and a proliferation rate 81.7±34.1 % higher in cell number in PEEU50/Gelatin fibers after 7 days of cell culture when compared to PEEU fibers without coating. In this work, we demonstrate that water-soluble gelatin can be incorporated as the outer shell of a polymer fiber via molecular entanglement, with a sustained presence and role in enhancing stem cell attachment and proliferation.
Keywords: PEEU, gelatin, electrospun fibers, mesenchymal stem cells, biomaterials
DOI: 10.3233/CH-199235
Journal: Clinical Hemorheology and Microcirculation, vol. 74, no. 1, pp. 53-66, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl