Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected Presentations from the 29th Conference of the German Society for Clinical Hemorheolgy and Microcirculation, Freie Universität Berlin, Germany, 17–18 September 2010
Article type: Research Article
Authors: Battig, Alexander; | Hiebl, Bernhard | Feng, Yakai; | Lendlein, Andreas; | Behl, Marc;
Affiliations: Center for Biomaterial Development and Berlin Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany | Tianjin University—Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin, China | School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
Note: [] Corresponding author. Tel.: +49 03328 352450; Fax: +49 03328 352452; E-mail: andreas.lendlein@hzg.de
Abstract: Polydepsipeptides, alternating copolymers consisting of α-amino acids and α-hydroxy acids, are degradable polymers. Depsipeptide-based polymers of varied architectures can be synthesized via ring-opening polymerization of various morpholine-2,5-dione derivatives. Thermoplastic phase-segregated multiblock copolymers with poly(ε-caprolactone) (PCL) and poly(iso-butyl-morpholinedione) segments have been synthesized from the macrodiols and an aliphatic diisocyanate as a coupling agent. The respective multiblock copolymers showed shape-memory capabilities and good elastic properties, making them attractive candidates for potential application as biomaterials for controlled drug release systems, scaffolds to be applied in tissue engineering or biofunctional implants. Thus, these abilities cumulate to form multifunctional materials, combining degradability with shape-memory capability. The advantages of depsipeptide-based multiblock copolymers compared to previously reported poly(ether)ester-derived biomaterials having shape-memory property may result from their different degradation products, as the resulting α-amino acids may act as a buffer for the hydroxy acids, thereby stabilizing pH values. In this context, we report on the biological evaluation of material samples in accordance with international standards (EN DIN ISO 10993-5 and 10993-12). Here, extracts of the substrates were exposed to a continuous fibroblast like cell line (L929) to study cytocompatibility of extractable substrates. Cell viability, morphology, LDH-release (as a parameter for the functional integrity of the cell membrane), activity of the mitochondrial dehydrogenases (as a parameter of the cell activity) and assembly of the actin- and vinculin cytoskeleton indicated no incompatibilities between the extracts and L929 cells. These results suggest that depsipeptide-based multiblock copolymers are promising candidates for soft, multifunctional implant materials.
DOI: 10.3233/CH-2011-1391
Journal: Clinical Hemorheology and Microcirculation, vol. 48, no. 1-3, pp. 161-172, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl