Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Song, Ruia | Zhang, Jiab; * | Huang, Junhuac | Hai, Taoa
Affiliations: [a] Department of Emergency Medicine, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China | [b] Division of Neonatology, Chengdu Women and Children’s Central Hospital, Chengdu, Sichuan, China | [c] Department of Breast Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
Correspondence: [*] Corresponding author: Jia Zhang, Division of Neonatology, Chengdu Women and Children’s Central Hospital, Chengdu 610031, Sichuan, China. Tel.: +86 13980752533; E-mail: zhangjia_medical@sina.com.
Abstract: OBJECTIVE: Breast cancer is a common malignancy in women and long non-coding RNAs (lncRNAs) have been shown to play key roles in the development and progression of breast cancer. In the present study, we examined the biological role of lncRNA gastric carcinoma highly expressed transcript 1 (GHET1) in breast cancer. METHODS: The expression of GHET1 was determined by qRT-PCR assay; CCK-8, colony formation, Transwell invasion and migration assays detected breast cancer cell proliferation, invasion and migration; cell apoptosis and cell cycle were determined by flow cytometry; protein levels were determined by western blot assay. RESULTS: GHET1 was up-regulated in breast cancer tissues and cell lines, and the up-regulation of GHET1 was positively correlated with larger tumor size, advanced clinical stage, lymph node metastasis and shorter overall survival. Knockdown of GHET1 suppressed cell proliferation, invasion and migration, and induced apoptosis and G0/G1 cell cycle arrest in MCF-cells. Knockdown of GHET1 also suppressed the protein levels of N-cadherin, vimentin, and decreased the protein level of E-cadherin in MCF-7 cells. On the other hand, overexpression of GHET1 promoted cell proliferation, invasion and migration, and inhibited cell apoptosis and increased cell population at S phase in BT-20 cells. Overexpression of GHET1 also promoted epithelial mesenchymal transition (EMT) in BT-20 cells. Furthermore, knockdown of GHET1 also suppressed in vivo tumor growth of MCF-7 cells, and also decreased the protein levels of N-cadherin and vimentin, and increased the protein levels of E-cadherin in the tumor tissues from the nude mice. CONCLUSIONS: Our results demonstrated that GHET1 was up-regulated in breast cancer tissues and cell lines, and promoted breast cancer cell proliferation, invasion and migration by affecting EMT. Our study for the first time revealed the biological functions of GHET1 in breast cancer.
Keywords: Breast cancer, GHET1, cell proliferation, invasion and migration, apoptosis, epithelial mesenchymal transition
DOI: 10.3233/CBM-181250
Journal: Cancer Biomarkers, vol. 22, no. 3, pp. 565-573, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl