Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Darwish, Yasser | ElGawady, Mohamed; *
Affiliations: Department of Civil Engineering, Missouri University of Science and Technology, Rolla, MO, USA
Correspondence: [*] Corresponding author. Mohamed ElGawady, Department of Civil Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA. E-mail: elgawadym@mst.edu.
Abstract: An accidental collision with bridge structures can have catastrophic consequences. Such collisions have resulted in human casualties and partial or full collapse of bridge structures. In the U.S., 15% of bridge failures were due to a vehicle collision. Increasing traffic volume resulted in an increase of collision events, especially with over-height trucks on highways. Innovative impact protection systems have become a point of interest to protect both structures and human lives. Metamaterial systems that have the ability to exhibit unusual properties such as negative stiffness behavior can dissipate high levels of energy. Such systems became a point of interest in base isolation, impact protection, and shock absorption applications. Bi-stable elements such as pre-buckled beams can be designed to exhibit negative stiffness behavior under transverse loading. Recent studies have shown that such systems can dissipate up to 70% of the input energy by transferring from one mode of buckling to another. The snap-through behavior of such elements remains in the elastic region of the material, which allows the system to recover the initial configuration after unloading. Finite element modeling (FEM) of bi-stable elements was carried out to address the bi-stability behavior and predict the force threshold as well as the amount of energy dissipated through such elements. FEM results were validated with experimental results. Key parameters that affect the behavior of bi-stable elements were investigated to study the different force thresholds and energy dissipation levels. The developed FEM can be used to predict the behavior of bi-stable elements and hence, design them in accordance with force thresholds and energy dissipation requirements.
Keywords: Metamaterial, energy dissipation, bi-stability, finite element, bridges, impact, pre-buckled beam, honeycomb
DOI: 10.3233/BRS-190161
Journal: Bridge Structures, vol. 15, no. 4, pp. 151-159, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl