Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cowin, S.C.
Affiliations: Department of Mechanical Engineering, Tulane University, New Orleans, La., U.S.A.
Abstract: It is argued that the theory of polar fluids does not adequately model blood flow in the microcirculation. The principal argument against the use of the theory is that, on one hand, most experimental evidence shows that a significant feature of blood flow in tubes of this size (i.e. 30–300 μm) is that local hematocrit varies with radial position in the tube, while on the other hand, polar fluid theory contains no field variable one can associate with, or use to determine, the variation of local hematocrit with radial position. A corroborative argument is that polar fluid theory does not predict a reduction in apparent viscosity in flow through tubes as tube diameter decreases while such a phenomenon is well known for blood.
DOI: 10.3233/BIR-1972-9102
Journal: Biorheology, vol. 9, no. 1, pp. 23-25, 1972
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl