Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lew, H.S. | Fung, Y.C.
Affiliations: Department of AMES (Bioengineering), University of California, San Diego, La Jolla, California
Abstract: The motion of the plasma trapped between two adjacent red blood cells moving with a constant speed in a capillary blood vessel is studied. In this study, the convective inertia force of the plasma is neglected in comparison with the viscous stresses on the basis of the smallness of the Reynolds number of the flow in the capillary. The red cells are approximated by cylindrical pill boxes whose radii are the same as that of the blood vessel. The capillary blood vessel is approximated by a circular cylindrical tube with impermeable wall. With such an ideal model the velocity and pressure fields are determined.
DOI: 10.3233/BIR-1969-6205
Journal: Biorheology, vol. 6, no. 2, pp. 109-119, 1969
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl