Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Review Article
Authors: Baskurt, Oguz K.
Affiliations: Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
Note: [] Address for correspondence: Dr. Oguz Baskurt, Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey. Tel.: +90 242 310 1560; Fax: +90 242 310 1561; E-mail: baskurt@akdeniz.edu.tr.
Abstract: It is has been known for more than 80 years that compared to in vitro determinations, blood behaves as a less viscous fluid under in vivo flow conditions. The experiments of Whittaker and Winton were among the first dealing with the in vivo effects of altered blood rheology, and experimental studies during the second half of 20th century have provided additional evidence for the complexity of in vivo hemodynamics–hemorheology relationships. Careful studies indicate that the impact of a given blood rheology alteration is determined by the properties of the experimental model (e.g., organ or tissue under investigation), experimental approach (e.g., intravital microscopy, whole organ perfusion) and method used to modify blood rheology. In addition, vascular control mechanisms may play a major role in the resulting hemodynamic effects of a hemorheological alteration: (1) a response simply related to metabolic autoregulation in which there is a compensatory vasodilation due to altered in vivo blood flow and organ/tissue hypoxia; (2) modulation of endothelial function (e.g., NO production) via altering wall shear stress, thereby leading to changes of vascular hindrance. The in vivo effects of altered red blood cell (RBC) aggregation have been investigated in various experimental models. A novel technique for modifying RBC aggregability (i.e., intrinsic tendency of RBC to aggregate) by covalent attachment of specific co-polymers has been used in some studies, and has provided data reflecting the specific effects of RBC aggregation without the influence of altered suspending phase properties. These data indicate that both the magnitude of the hemodynamic effect and the direction of the alteration depend on the intensity of RBC aggregation. Using the same novel technique, RBC aggregation has been shown to be an important determinant of endothelial function through its effects on RBC axial distribution and wall shear stress. These somewhat diverse findings can be explained by considering the contribution of various in vivo hemorheological mechanisms that have opposite effects on in vivo flow resistance.
Keywords: Hemorheology, erythrocyte aggregation, erythrocyte deformability, in vivo blood flow, hemodynamics
DOI: 10.3233/BIR-2008-0515
Journal: Biorheology, vol. 45, no. 6, pp. 629-638, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl