Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers of the 5th International Symposium on Mechanobiology of Cartilage and Chondrocyte, Athens, May 2007
Article type: Research Article
Authors: Anghelina, Mirela | Sjostrom, Danen | Perera, Priyangi | Nam, Jin | Knobloch, Thomas | Agarwal, Sudha
Affiliations: Laboratory of Biomechanics and Tissue Engineering, The Ohio State University, Columbus, OH 43210, USA
Note: [] Address for correspondence: Sudha Agarwal, PhD, Biomechanics and Tissue Engineering Laboratory, 305 West 12th Avenue, Columbus, OH 43210, USA. E-mail: agarwal.61@osu.edu.
Abstract: Physical therapies and exercise are beneficial not only for physiological recovery in inflamed or injured joints, but also for promoting a homeostatic equilibrium in healthy joints. Human joints provide the pivot points and physiological hinges essential for ambulation and movement to the body, and it is this mobility that in return promotes the health of the joints. But how mobilization regulates the joint microenvironment at the molecular level has remained enigmatic for many years. Recent advances in joint biomechanics and molecular approaches have facilitated an enriched understanding of how joints operate. Consequently, the mechanisms active during joint inflammation that lead to arthritic conditions, both in vivo in animal models, and in vitro at cell and tissue levels, have become increasingly detailed and defined. These efforts have produced mounting evidences supporting the premise that biomechanical signals play a fundamental role in both the etiopathogenesis of arthritic diseases and in the physiological restoration of joints. This report aims to summarize current peer-reviewed literature and available experimental data to explain how the signals generated by mechanical forces/joint mobilization generate beneficial effects on inflamed articular cartilage, and to propose the basis for using appropriate physical therapies for the optimal benefit to the patient suffering from joint associated injuries.
Keywords: Cartilage, chondrocytes, mechanical strain, NF-κB, signal transduction, inflammation
DOI: 10.3233/BIR-2008-0472
Journal: Biorheology, vol. 45, no. 3-4, pp. 245-256, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl